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1. INTRODUCTION AND SUMMARY

Multitarget Tracking Studies (MTS) is a research effort which has
the objectives of developing and evaluating a new concept for tracking
multiple targets. The algorithms developed in this program (which will
be referred to as the MTS algorithm or processor) will complement and
enhance currently used tracking techniques. While the main goal of the
program is directed towards multiple targets, MTS is expected to have a

significant impact on the single target case as well.

In this report, we summarize the main theoretical developments and
some preliminary performance evaluation results. This work is part of
the first phase of the MTS research program in which the single target
case was studied. Results so far have been very promising and we expect
to adapt the techniques developed in this initial phase to handling

multiple targets during the second phase of the program.

An important point here is the following. It has not been the
cbjective of this study to surpass conventional estimation performance
of spectrum and TDOA analyzers. The original emphasis was upon demon-
stration that a framework in which these functions can be carried out
naturally for mulciple targets is one in which performance on individual
targets can be maintained. It was sufficient, therefore, to demonstrate
that even for low SNR (-10dB-0dB) the MTIS performance compares with
conventional approaches. These approaches make their processing gains
by integration, a procedure also available to MIS. Because pre-integration
performance of MTS was so encouraging, no further pursuit toward com-
parison was undertaken. However, it turned out that the new approach
to adaptive signal processing implicit in the MTS processing could be
developed to ome offering substantial improvement over current techniques.
While our research effort is directed towards the development of
tracking algorithms, the signal modeling approach has a much wider

applicability to the Navy's signal processing problems. In particular,
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the MTS algorithm is directly applicable to a number of adaptive

signal processing problems, including: line enhancement, high resolution
spectral estimation, noise cancelling and channel equalization. Applving
the proposed ARMA modeling techniques to some of these problems has
already resulted in substantial performance improvements. The analvsis
of the MTS algorithm as it is used for adaptive signal processing is

summarized in [10].

The MTS concept is based on modeiing the observed data as an ARMA
process. The parameters of the model provide a compact representation
of target parameters such as spectrum and TDOA/bearing. These parameters
can, therefore, be used as inputs to a tracking algorithm, a target
classification program, etc. Section 2 of the report describes the MTS

concept and how it fits into an overall system.

A major part of our effort has been directed towards developing and
coding the basic MIS algorithm. This algorithm is a parameter estimation
technique which recursively computes a set of ARMA parameters from the
observed data sequence. This algorithm is now implemented as an inter-
active computer program and it provides a very powerful and flexible signal
processing tool. This program will be the core of our future MTS work.

Section 3 of the report describes the algorithm and its main features.

The main issues addressed so far are TDOA estimation and estimation of
the spectral parameters of the target under different signal-to-noise ratio
conditions. Several synthetic test cases, both narrowband and broadband,
were used to evaluate the performance of the MIS algorithm. Results were

very encouraging.

For high SNR (20dB and above) the algorithm provided excellent results,
and had no problems in converging to the right spectral/TDOA parameters.
In moderate SNR (0-20dB), serious convergence problems were initially

experienced.

b Ln,&. Juiade o _aonank e
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A significant amount of effort was devoted to studying and solving
these problems. Our solution provides an important step in extending the
range of applicability of recursive parameter estimation algorithms to low
SNR situations. A number of publications on this topic are in preparation.
Currently, we are able to get good spectral and TDOA estimates for SNR's in
the 0-20dB range. Our experience with low SNR (-10dB-0dB) has been that
performance matching or exceeding conventional approaches can be achieved.
No special difficulties were observed at low SNR, but we feel that some

refinements of the algorithm may improve performance even further.

The positive results obtained so far will provide the basis for our
next phase of research, in which the multitarget tracking algorithm will

be developed. Our research will be performed in two steps:

(1) Complete the single target tracking algorithm.

Here, we will concentrate on the issues associated with the operation

of the MTS algorithm at low SNR. We will make the algorithm more robust
by pre~filtering and other methods, test its tracking capability on
svnthetic data with time varying parameters and develop performance

bounds to evaluate its performance against suitable standards.

(ii) Development and testing of multitarget algorithms for the
high SNR case. :

Here we will develop and evaluate a candidate algorithm for tracking
several targets. The objective will be to demonstrate the capability

of an MTS algorithm to provide consistent tracks for several targets.

In particular, we will investigate the special structural properties

of multi-input multi-output (MIMO) svstems of the type used to model the
multitarget tracking problem, and study questions of identifiability :

and uniqueness. The extension of the MIS approach to tracking multiple

targets at low SNR will be deferred to a third phase of the project.
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Several issues need to be investigated in order to achieve such an
extension, including: the convergence of the MIMO RML algorithm,

development of pre-filtering and other mechanisms for improved con-
vergence and analysis of the uniqueness and identifiability issues

under low SNR conditions.

This plan of work is summarized in the following schematic:

SINGLE MULTIPLE
TARGET TARGETS
PHASE I . PHASE 11
X (1) gy
High SNR
(| 1
v v
Low SNR Y e | oy
PHASE 1] PHASE 11

We believe that the next phase of the MTS project will result in

significant contributions to the areas of multitarget tracking, adaptive

signal processing, multichannel parameter estimation and modeling of

vector time-series.




2, SYSTEM DESCRIPTION

The MTS algorithm is a coherent, time~domain signal processing tech-
nique for extracting target parameters (spectrum and TDCA/bearing) from

multisensor data. The sensors may be the elements of one or several arrays.
The MIS algorithm may operate directly on wideband sensor data, as depicted

in Figure 1.

i———\\\_q
> | MIS Ly TARGET
T| PROCESSING[™ PARANEIExS

—A MG O = -

\

SENSORS

Figure 1: The MTS Processor

However, since the computational requirements of the MTS algorithm
increase in proportion to the bandwidth of the input signal (as will be shown
later), it is desirable to reduce the bandwidth of the sensor signals before
handing them to the MIS algorithm. This can be done by a preprocessing step,
in which one or more spectral bands of interest are shifted in frequency to

provide a combined, relatively narrowband signal, as depicted in Figure 2.

SELECTED SPECTRAL BANDS

[ [
—» FREQUENCY

>

» FREQUENCY

Figure 2: Bandwidth Selection




This bandwidth reduction can be implemented in many different ways.

A block diagram of one possible implementation is depicted in Figure 3.
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b) Multiple Spectral Bands
Figure 3. Preprocessing for Bandwidth Reduction

In the rest of this report, we will always assume that this prepro-
cessing step has been performed, and that the MIS processor is handed data

with a bandwidth of B Hz. The data is sampled at the Nyquist rate, thus
AT g sampling interval = 1/2B ¢0)

A typical spectrum of the signal at the input of the MIS algorithm
will contain several spectral lines in a noise background, as depicted in
Figure 4. This spectrum was obtained by performing an N point FFT of

the data where
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1
N = number of data points, (2a)
which corresponds to an integration time of
T = NAT = N/2B. (2b)

The frequency resolution of this spectral plot is Af Hz per point,

where
1 2B
M=ga~ ¥ - ()
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Thus, the i-th point on the plot represents a frequency fi, where

i 21iB
*Ner ™ W (%)

In this report, we will define the signal-to-noise ratio (SNR) as
the ratio of the total signal energy to the total noise energy in the band-
width B which is provided to the MTS processor. The signal and noise

processes are generated by a synthetic data generator which produces for

each sensor a data sequence yi(t).
yi(t) =s,(t) + n, (t) (3
si(t) = signal arriving at sensor 1

ni(t) = measurement noise at sensor i (white Gaussian

noise, independent from sensor to sensor).

The total signal and noise energies (Si’ Ni) are computed by

N
1 2
S, = — s, (t) (6a)
i N tgl 1
N
1 2
Ni o tE-l ni(t:) (6b)

and the corresponding signal-to-noise ratio is given by

>

SNRi = Si/Ni ¢h)

The noise energy is related to its spectral power density by

N=NB (8)

where No is noise energy per Hz.




The MTS algorithm is based on the idea of fitting an autoregres-
sive moving-average (ARMA) model to the observed time series (see
Appendix A for a more detailed explanation). The basic model is depicted
in Figure 5. The autoregressive (AR) part of the model provides informa-
tion about the spectrum of the target, while the moving-average (MA) part
gives the TDOA information. Thus, once an ARMA model has been fit to the
observed data, all the target parameters can be obtained from the ARMA
coefficients {ai,Bi}. The spectral estimate of the target can be
obtained by an FFT of the impulse response of the AR model portion¥*.

More precisely, we can FFT the time series x(t)

n

a
x(t) = - 2: ay x(t-1) + u(t) 9

i=1

1 t=0

u(t) ={0 t#0

The normalized estimate of the target power spectrum Sx(i) is

given by

N
. 2, 2 2
5,.(1) = [x,|° / 5§'1 X9 (10)

where {Xi} is the FFT of {x(t)}. The interpretation of the frequency
corresponding to the i-th spectral estimate (Sx(i)) is given by (4).

The TDOA estimates can be obtained by looking at the bi coeffi-
cients, as depicted in Figure 6. The TDOA corresponding to a difference
of one (in order) is AT, where AT is the sampling rate of the data at
the input to the MTS algorithm. This is not necessarily the ultimate
resolution of our TDOA estimation, since finer resolution can be achieved
by interpolation. A more detailed discussion of this point can be found

in Appendix B.

*Note that we could also evaluate a z-transform.




o AR x(t)
u(t) MODEL
Y3
R NP S S NP i
SPECTRAL MODEL PROPAGATION MODEL
C; = Attenuation, Di = Delay
Target: n
- . L -
x(t) = 1; ay x(t-i) + u(t) X(z) O U(z)
Receiver: -D]
cqx(t-04) Cq2
1 1 1 D
y(t) = czx(t-Dz) Y(z) = Cy2 2 X(2)
-D
c3x(t-D3) _?32 ?.
B(z)

The Overall Model:

n m
. . _ B
y(6) = - 2 ap(e-i) ¢ 2 Buleet)  v(2) - B ()

Figure 5. An ARMA Model for the Single Target Case
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Figure 6. Estimating TDOA-s From the bi Coefficients
A change of AT in the TDOA can be translated into a change of
bearing A€ by (see Figure 7),
A8 = vAT/Lcos8® = v/2BLcos8 (11)
where

L = distance between the two sensors

8 = bearing

v = gound velocity.




SENSOR 1 o

-
-

SENSOR 2 e--~
TOOA = L sing/v

AT = L cosb A8/v

Figure 7: The Geometry for TDOA Computation

The total angular extent over which the MIS processor can be "steered" ,
is given by Ae-nb where nb = the number of b coefficients, i.e.,
the order of the MA model. This angular extent can, of course, be increased
by removing bulk delays prior to the MIS processor. If necessary, several
MIS processors can be run in parallel, each covering a section of A6~nb

degrees.

Consider, for example, the following representative case:

1200 meters
1490 m/sec
20

10 Hz

wUP <
[]

then: AB = 3,55°

Ae-nb = 71°,

The presence of doppler shifts in the received signals will be handled
in the MIS algorithm by computing a different set of {ai} for each sensor.
In other words, different sensors will observe different (shifted) spectral
lines. This feature of the algorithm has not been tested yet, but more

details can be found in Section 3.




The estimated target parameters computed by the algorithm will be
used as an input to various post processors which extract operational
parameters such as target location (coordinates), target signature, target
type, etc. An overall block diagram of the processing in an MTS system is

depicted in Figure 8.

e Signature formation
o Target Classitication
o Reacyuisition

i & Uiscrimination

PREPROCESS ING MTS
PROCESSING

¢

(Bandwidth
Selection)

Sensors e Track lmitiguion

o Taryet Localization

Post Processing

Figure 8. Block Diagram of a Basic MTS System
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3. THE MTS ALGORITHM

The core of the MIS processor 1s a recursive parameter estimation
algorithm which estimates ARMA coefficients from an observed data sequence.
Algorithms of this type have been developed in the context of adaptive con-
trol [l]. Our application of this class of algorithms to acoustic signal

_processing seems to be a pioneering effort which promises to lead to a
whole new class of adaptive signal processing techniques. Some important
modifications are required in transforming this type of algorithm from the
control context to the signal processing context, A significant part of
our research effort was directed to investigation and developmeunt of these
modifications. A key development, which is described later in this section,

was the improvement of the convergence properties of the algorithm.

The Basic Algorithm

Several versions of recursive parameter estimation algorithms have

been coded and tested:

(1) Recursive Least Squares (RLS)
(2) Recursive Maximum Likelihood (RML1)
(3) Modified Recursive Maximum Likelihood (RMLP)

(4) Recursive Maximum Likelihood with Prefiltering (RML2)

Initial experiments indicated that the RML2 algorithm is most suitable
for our application. We will therefore describe here only the RML2 algorithm.
For a more detailed description of all of these algorithms see [2], [3].

The RML2 algorithm estimates the parameters of an ARMA model of the
following type:

n n n
a b [
y(t) = — a, y(t) + b, u(t-i) + c, e(t-1i) (12)
1z=:1 1 Eli i>;bi

where e(t) 1is an (unobservable) white noise process. The presence of the

! PRECEDING FaAGE BLANK-NOT FIiskD
15

i amime e s s s N kA e ik M R AL v



ci coefficients enables us to handle correlated measurement noise and

the case of unknown inputs. It is assumed that c°=1. Equation (12)

can be written more compactly as
y(€) = 97(e)0 + e(t) (13)
where
3T(0) = [=y(t=1),.n0pmy(t=0); u(t=1),...,u(t-n); e(e=1),...,e(t-n )]

T
3 = [al, cers @ bl’ cees bn 3 Cls cees cn ]
a a c

The dimension of © and ¢ 1is
n= na + nb + nc.

Since Eq. (13) is linear in the unknown parameters (the components
of &), a recursive estimation algorithm is obtained by the following

set of Kalman filter equations:

3(t+1) = (L) + K(t+l) e(t+1) (l4a)
K(t+1) = P(t) O(t+1)/(A + ST (t+1)P(£)O(L+L)) = P(t+1) O(t+l) (14b)
P(t+l) = [P(E)-P(E)D(L+L)OT (e+1)P(e)/ Aol (t+1)P(E)0(E+1))]/n =  (lée)

= error covariance of the parameters.

e(t+l) = y(t+l) - ¢(t+l)T 9(t) = prediction error, (14d)

with initial conditioms,

P(o) = oI, o = a scalar parameter

8(0) = 0 or eo, a prior estimate.




The parameter )\ represents data windowing, i.e., it is the "forgetting
factor" of the algorithm., Various (time-varying as well as fixed) values
of this parameter have been tried out. To facilitate the convergence of
the algorithm on short data sequences the following was found to give the

best results:
A(t+l) = Xok(t) + (1—X°) (15)

where (o), Ao are specified parameters.

Other choices for ) are described in [2]. Two additional quantities

which are useful to keep track of the numerical behavior of the algorithm

are:
n
trace {P(t)} = 52; P, (0 (16)
and
n(t) = —%r trace {P(t)} trace {P(t)-l} = (17)
n

a measure of how close to singular is P(t).

The only difficulty with the algorithm described above is that it
requires knowledge of the unobservable noise sequence e(t) (which is
required for ¢(t)). Since e(t) is unknown, it needs to be replaced
by some estimate of e(t). Different versions of the Recursive Maximum

Likehihood algorithm are obtained by different choices of the estimate of
e(t). For example:

RML1

8(r) = e(t) = y(&) - o(t)T B(e-1)

17




e i

:

a(r) = y(r) - ()T 3(e) (19)

In RML2, the unknown e(t) is replaced by a filtered version of the
prediction error e(t). This filtering is crucial to the proper conver-

gence of the algorithm in MTS applicationms.

The filtering is accomplished by replacing the (t) vector which

is used in Equations (l4c), (14d) by a version of ¢(t) filtered by 1/D(z)
where

D(z) = 1+d.at+ ... +d 2z ™d (20)
1 n,

Summary of the Filtering Equations

Let nmax = max {na, nb, nc}

Define the n X 0 matrix D
max max

"d 'd ] -d 000..0 O_I]
1 2 n
d
1 0
D = 1 . (21)
‘o.. .
Soq, [}
'o.... [ )
0 e 0|

Define the nmaxxl vectors xl, Xys x3 by the following recursions
y(t)

0
xl(t+l) = Dvl(t) + , xl(o) =0 (22a)

18
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u(t)
0
x2(t+l) = sz(t) - ' , xz(o) = 0 (22b)
0
e(t)
0
x3(t+l) = Dx3(t) - ) , x3(o) =0 (22¢)
0
Let
;1(t) be naxl consisting of the first o entries of xl(t)
. ;é(t) be nbxl consisting of the first o, entries of xz(t)
;3(t) be ncxl consisting of the first n_ entries of x,(t)
then
3T () = (RT () Ro(t), Xo()] (23)
' 1 2 3
{
{ The significance of this filtering has to do with the convergence

properties of recursive parameter estimation algorithms. Convergence
analysis has shown ([4]-[6]) that without prefiltering, the criterion
for convergence is that

H(z) = - % (24a)

1
C(z)
be strictly positive real, i.e.,
Re{H(eI¥)} > 0 for all w. (24b)
Unfortunately, as will be discussed later, this condition is not

fulfilled for general MTS signals. Since C(z) 1is a property of the

signal, and is not under our control, it is not possible to guarantee
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convergence in this case. With prefiltering, the condition for conver-

gence becomes

H(z) = gg:; - % strictly positive real. (25)

The choice of the filter D(z) 1is under our control and, therefore,
there is hope of guaranteeing convergence. A typical choice for D(2)

[3] is

D(z) = C(2) (26)
The reasoning behind this choice is that if C(z) 1is a good estimate of
C(z), we will get

c(2)
C(z)

ne

H(z) = -2

1l -

[T
\I
o

(27)

In our preliminary tests, we discovered that for signals generated
by sine waves in white additive noise, this type of filter was inadequate
and convergence could not be achieved. This problem was the major
stumbling block in our initial research effort and led to a more careful
investigation into the convergence of RML2 for MIS signals. A solution
to the problem has been found and sucessfully tested. The technique we

E developed is a significant contribution to the study and application of
recursive parameter estimation. The main ideas of our technique are

described next.
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Improved Pre-Filtering for RML2

To understand the difficulties inherent in the pre-filtering problem,
we must first see what the C(z) polynomial means in terms of the target
spectrum A(z), the delay structure B(z) and the signal-to-noise ratio.

The observed signal y(t) is given by

() = 22y + (o) (28)
A(2)
. A ————  ——
signal measurement
noise
where
A(Z) =1+ ajz + + a z
a
n
B(z) = b; e+ bnbz' b
u(t) ,v(t) = independent white noise processes with variance oi
and ci respectively.
Multiplying through by A(2) we get
A(z)y(t) = B(2)u(t) + A(Z)v(t) (29)

Since neither u(t) nor v(t) is directly measureable, there is no way
of distinguishing between them and they can be replaced by a white process

e(t) with variance Oi such that
A(Z)y(t) = C(2) e(t), (30)

where

oZo() ¢z = B(2) B(zTh + dPa() az™h. (31)

In other words, C(2z) e(t) will have the same spectrum as B(z) u(t) +

A(2z) v(t). To gain some insight into what C(2) may look like,
D

we consider two simple examples. Both examples assume B(z) = sz- R

i.e., a pure delay propagation model.
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(1) SNR = o
. 2
In this case, O n = 0 and therefore

2. -1, _ 2
ce(,(z) c(z ) Ju b

o~

or

C(z) = OubD/Oe = constant (32)

(11) SNR =0 (or =-w=db)

In this case, the second term on the right-hand side of (?1)

dominates, and therefore,
o2 ¢@) c™h = oF A A

or
C(z) = A(2). (33)

In general, as the SNR decreases, the zeroes of C(2) will move from
the origin, towards the zeroces of A(2), as indicated in Figure 9. The
exact trajectory of this motion can be plotted using classical root locus
techniques [7]. Note that the zeroes of A(2Z) are shown in Figure 9 to
be on or very close to the unit circle. This is to be expected for narrow-

band line spectra and for pure sine waves.

Several conclusions can be drawn from the discussion above: (i) For
high SNR, no pre-filtering is needed since C(z) = a positive constant;
(1i) For very low SNR C(z) has zeroes near the unit circle which means
that 1/C(z) will most likely not be positive real! Thus, pre-filtering
is needed. We many choose either D(z2) = 6(2) or D(z) = X(z), since
C(z) = A(z). The choice D(z) = ;(z) is usually preferred since the esti-
mates of the AR coefficients {ai} converge much faster thanMA coefficients
{c;}.

Preliminary tests of the algorithms essentially confirmed these con-

clusiors. However, serious difficulties were experienced in the case of -
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narrowband signals in which case A(2) has zeroes very close to the
unit circle. Filtering by A(z) 1led the algorithm to diverge even for
reasonably good SNR's, Further investigation indicated at least two

possible causes for this phenomenon:

(i) The filter ;(z) is often unstable, i.e., ;(z) has poles
outside the unit circle. The reason is that since A(z)
has poles very near to the unit circle, relatively small
estimation errors are sufficient to make ;(z) unstable,

and cause the algorithm to "blow up”.

(ii) Tﬁe assumption that C(2) = A(z) and therefore that
(A(z)/C(2) - 1/2) 1is positive real is only true for very
low SNR's. At moderate SNR's, C(2) may be quite different
from A(z) as (31) and Figure 9 clearly indicate. Thus, it
would be preferable to find a filter D(z) that is closer
to C(z).

A solution which addresses both of these issues is the following:
let
D(z) = A(kz) (34)

where k 1is some constant smaller than one. The zeroes of A(kz) are
obtained from the zeroes of A(z) by shifting along radial lines, as
indicated in Figure 10. The new filter is implemented by setting

d, = k"a (35)

since n -n
1 + a kzz-2 + ... +a k a,
2 n,

Akz) = 1 +a) ke~ a (36)

The modified filter a(kz) 1s more stable than A(2), since its roots
are further away from the unit circle. Furthermore, by a proper choice of

k, these roots can be brought closer to the roots of C(z), as indicated

by a comparison of Figures 9 and 10.
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The introduction of this modified pre-filter greatly improved

the convergence properties of the algorithms for moderate and low SNR.

Finally we should note that typically the RMLZ algorithm is used
with nb = 0 and n = nc= twice the number of sine waves expected.
Setting n, = 0 1is necessary, since the inputs u(t) are not observable
by the algorithm. The algorithm is also used in another mode with
n,=n_ = 0 when performing TDOA estimation for pure sine waves in

noise, as will be discussed later.

‘\\\\‘~zeroes of A(kz)

Figure 10. The Root Locus for A(kz)
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4. PERFORMANCE EVALUATION

The MTS algorithm was coded and tested to evaluate its performance
for different types of signals and different signal-to-noise ratios. The
tests so far have been restricted to a single fixed target. Two aspects
of the algorithm were studied in these tests: estimation of target spec-
trum and TDOA estimation. In this section, we present some preliminary
results which indicate the type of performance achievable by the MTS
algorithm. It should be emphasized, however, that these results are not

conclusive; more testing would be needed to establish performance bounds.

4.1 Spectral Estimation

The signals used in our spectral estimation experiments were sine

waves in noise, i,e.,

m
y(£) = 35 a4, sin(2me/8,) + v(c) (37)
i=1
where
Ai = amplitude
;j Ni = period
2 v(t) = white gaussian noise

The RML2 algorithm was used to identify the {ai} parameters of the

received signal y(t). The final estimates a of the parameters are

then used to generate a spectral estimate. In our simulation, this was
done by generating the impulse response of the AR model 1/A(z), where
A ~ _l ~ N o
A(z) = 1+a;z "+ ...+ a z 2 and computing its power spectrum.

a

Some typical results for two test cases are shown in Figures 11-20,
Test Case #1

The signal was a single sine wave with a period Nl = 5,12,

Assuming that the MTS algorithm operates on a 1 Hz bandwidth (B = 1 Hz),




this correspends to a frequency of 0.390 Hz. It should be remembered
that this frequency is really a deviation from the nominal frequency
used in the bandwidth selection process depicted in Figures 2 and 3.
Thus, we actually are looking at an expanded picture of the spectrum

in the range of fo to f°+B Hz.

The algorithm used was RMLZ with n, = n = 2, nb = 0, A(0) = .95,

Xo = .,99. 1In all cases N=512 data points were used. This corresponds
to an integration time of T = 256 sec = 4 minutes (again assuming B=l).

The results are summarized in Table 1 and Figures 11-15. It should
be pointed out that for the low SNR cases (-5 dB, ~10dB) the algorithm
really requires a longer integration time. However, already at N=512
points, or 4 minutes of integration, the true spectrum starts to emerge.
For comparison purposes, we have included in the figures a plot of a con-
ventional FFT, using the same number of data points. Hanning windowing

was used where indicated.
Test Case #2
The signal consisted of two sine waves with periods N1=5.12, N2=3.00,

which correspond to 0.390 Hz and 0.667 Hz. The same algoritim was used as
in Test Case #l. The results are summarized in Table 1 and Figures 16-20.
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Figure 11B: Spectrum Obtained by FFT of Received Signal
(Windowed) SNR=20dB, N=512
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Figure 12A: Estimated vs. True Spectrum -- SNR=10dB
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Figure 12B: Spectrum Obtained by FFT of Received Signal
(Windowed) SNR=10dB, N=512
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4.2 TDOA Estimation

Several techniques for TDOA estimation based on the MIS algorithm
were implemented and tested. The first and most straightforward approach
consists of estimating the coefficients {bi} of an MA model relating

the signals yl(t), yz(t) at the output of two receivers. Let us assume

that the signals in the two receivers are given by
yl(t:) = x(t-Dl) + nl(t) (38a)
yz(t) = x(t-DZ) + nz(t) (38b)

where

x(t) = target signal
Dl’DZ = propagation delays

nl,n2 = independent measurement noise processes

This equation can be rewritten as

yz(t) = yl(t-r) + n(t) (39)

where

T = D2 - Dl = TDOA

n(t) = nz(t) - nl(t-T)
Equation (39 ) represents a special case of a moving average model

nb

yp(t) = 1‘?1 by, (e-1) + n(t) (40)

with bi # 0 except for bT = 1, Thus, estimating the model parameters
and looking for the largest {bi} will indicate the value of the TDOA.
These parameters can be also used to estimate noninteger values of the
TDOA by a proper interpolation technique, as discussed in Appendix B.
This interpolation technique was used to provide estimates in two test

cases:
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Case #1

A second order AR model driven by white noise, with a spectrum
given by Figure 21, The algorithm used was RLS with n,=n, = 0,

n, = 7, A(o) = .95, Ao = ,99, Some typical results are summarized in

B
Table 2. The true value of the TDOA was T = 3.00.

Case #2
A fourth order AR model driven by white noise with a spectrum
given by Figure 22. The same algorithm was used as in case #l. The

true value of the TDOA was 3.00.

TABLE 2

TDOA Estimation

SNR (d8) | b, b, by b, T b | b b, : i Plo) | slo) {T l

- | .000 | .000 | 1.000 .00 | .00 | .00 | .00 | 3.000 i 0 | 2500 | 512

20 | -.085| 008} .g9r | .032 | -.028 [ -.028 | .020 | 2.9¢5 10 | zer0 | 512

o 10 | -ase | -.160 | .et6 | 120 -az1 | <ora | o1 | 2.9 10 | zero | 512
0 .57 137 ] .38 .04 -3 | <127 | L0271 2,804 | seec | 512
-5 | -.095] .o7a| .77 ) .02a| -.006 ] -.000 | .om | 2.772 10 | SPEC |2068 |
216 | -.085 | .039 | .080 | -.002 | -.0a5 | -.051 | -.005 | 2.705 10 | spec |20a8 |

= | .000{ .000| 1.000| .000| .000| .000 | .000 | 3.000 | seec | 52

20 | -.189 | .283| .535 | .238 | -.154 | -.026 | -.007 | 2.876 A | seec | sz

case 10 | 232 | 277 | .39 70 | -.180 | -.035 | -.022 | 2.59) 1| seec | si2
0 | -.160 [ .102 | .23 10 | =170 | -.166 | -.026 | 2.515 1 SPEC | 512

-5 | -.082| .oe5 | .159 | .040 | -.089 | -.144 | -.087 { 7.715 1| spec |2088

.10 | -.000| .08a| .o76 | .010 | -.038 | -.075 -.o:zj 2.673 1| seec |2048
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A somewhat improved version of this approach can be obtained by
using the MTS algorithm in an Adaptive Line Enhancer (ALE) mode of opera-
tion. The algorithm described in Section 3 provides a predicted estimate
of the input signal (see Eq. (14d)),

gt = o+ B(t) . 41)

The estimated signal y(t) provides a cleaner, i.e., less noisy version
of the received signal y(t). This is illustrated in Figures 24 and 25
which compare the power spectra of y and y for two test cases. Note

the significant decrease in the noise levels in 24B and 25B.

Thus, the "enhanced" signal y(t) can be used as an input to the
TDOA estimation algorithm, as depicted in Figure 23. Initial results
have indicated some improvement when this method was used, however, more

testing is necessary before final conclusions can be drawn

A second approach to TDOA estimation is based on "whitening" the
sensor signals using the MTS algorithm and then cross-correlating to
obtain the TDOA estimate. The signal whitening is achieved by using the
RML2 and obtaining the residual sequence et corresponding to the input
signal Ve (See Figure 26.) Correlating the residuals gives a sharp well-
defined peak which provides a better indication of the TDOA. Some typical

examples are given in Figures 27A, 27B, which compare the correlation func-

tion of the residuals with that of a cleaner version of the data obtained
by using the predicted signals Yy0Ype This approach has significant
similarities to the coherence techniques now widely employed for target

detection and localization [ 9].
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A third approach to TDOA estimation is based on the idea that the
residuals Ei(c) provide an estimate of the white driving process wu(t).
Therefore, it is possible to use the residual €l(t) computed for
sensor #1 together with the received data yz(t) in sensor #2 as the
"known'' input and output of an ARMA model, and thus apply the RLS esti-
mation algorithm to find its parameters (see Figure 28).

Y » RML2 —>
RLS t—»a.,

y >
¢ L

Figure 28. TDOA Estimation by Estimating The Input
to the Spectral Model

T >

The residual process El(t) is in fact a noisy estimate of the
input process wu(t). It has two components: one due to the measurement
noise, and the other due to the unpredictable part of tne signal. In
wideband signals, the second component is significant and we may expect
el(t) to provide a reasonable estimate of wu(t). However, in narrow-
band signals, which are highly predictable, the second component is
small and sl(t) is a very noisy estimate. (In fact, for pure sine waves

the second component vanishes!)

These statements are substantiated both by theory and by tests.
We found that for pure sine waves, the residuals eventually converge to
the measurement noise, and no longer contain information about the signal.
For AR processes which are not pure sine waves, the method described
above worked satisfactorily in sufficient high SNR. The more narrowband

the signal, the worse the performance obtained for a given SNR.
The last approach that was considered for TDOA estimation was to perform

multichannel (single input-multiple outputs) parameter estimation using an

extension of the RML2 algorithm. One form of the multichannel algorithm,
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suitable for the no noise case (SNR=«), was implemented and tested success-
fully. As expected, no problems occurred in the no-noise case. The
algorithm requires some modifications before it can be used on noisy data

(see [2].

Computational Requirements

The computational requirements of the MIS algorithm, us any other
algorithm, are difficult to estimate since they depend strongly on a
particular implementation. Furthermore, a major part of the computational
load is due to data handling, I/0, and the interactive nature of our
current program. However, a useful indicator of the amount of computa-
tion involved is given by counting the number of operations (multiplies
and adds) needed to compute equations (14) and (22), which constitute the
basic RML2 algorithm. An approximate count gives ~(4n + Snz) multiplies
(where n = the number of estimated parameters) and a comparable number of
adds, per single update. If the algorithm operates on M sensors for X

data points, the total count becomes
No. of operations ~(4n + SnZ)MN = 2(4n + SnZ)MBT
Assuming a typical set of parameters:
n=20, M=5, B=10Hz, T =1 sec.
we get 2xlO5 operations per second. It should be emphasized that this
figure is a very rough estimate. Alternative forms of these algorithms

are currently available which are more efficient (the so-called "fast"

algorithms)4 however, they were not implemented at thils stage of the

development.
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5. WORK IN PROGRESS

As mentioned earlier, the results presented in this report are only

preliminary.

directions:

(1)

(i1)

We are continuing our investigation in two principal

Algorithm Development/Refinement

The experience gained in testing the MTS algorithm leads
us to believe that the performance achieved so far can be
further improved. Some of the specific issues which are

currently addressed include:

e improved convergence by monitoring the stability of
the filter a(z), and adjusting the parameter vector
5 so that the roots of C(z) will stay inside the
unit circle. The results of some initial tests are
depicted in Figures 29A-29D. Note the very substan-
tial improvement that was obtained compared to Figures
15A, 19A, 20A, and the fact that Figure 29D corresponds
to SNR =-15dB!

e development of algorithms that incorporate structural
constraints of the estimated parameters (e.g., the
fact that the {ci} parameters are related to the {ai}

parameters via equation (31)).

Algorithm Testing and Performance Evaluation

After developing the core MTS program, we are now in a
position to perform a more comprehensive set of tests
to study the performance of our algorithms. Specific

issues which are being investigated include:

o test the tracking capability of the MTS algorithm

on synthetic data with time varying target parameters

(TDOA and spectrum).
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e Test algorithm performance under a variety of
conditions including multipath, and more realistic
(but still synthetic) data.

In addition to this work which is part of Phase I of the project,
we are also studying some of the problems to be addressed in Phase II,
i.e., the extension to the multiple target case. This extension will
involve fitting a multi-input, multi-output (MIMO) ARMA model to the

observed data, as depicted in Figure 30.

We are currently studying some of the basic problems involved in
estimating the parameters of MIMO systems and evaluating the modification

required to adapt our current MIS algorithm to the multitarget case.

Our approach to the multitarget case will consist of two steps, as
mentioned in the introduction. First, we plan to treat the no-noise case.

Some of the fundamental issues that need to be addressed are:

. Develop an algorithm for identifying multi-input multi-
output systems with unknown inputs. Current techniques
are available only for the known input case. Some pre-
liminary work was already performed in the current phase

and we do not anticipate any major difficulties.

] Investigate the special structural properties of the MIMO
case (e.g., going from Left Matrix Fraction Description to
Right Matrix Fraction Description, while preserving the
structure (see Appendix A, Equation (18)).

) Study questions of identifiability and uniqueness of the
MIMO ARMA model and their relationships to achievable

resolutions (e.g., separation of closely spaced targets)

and to the discrimination capability of the MTS algorithm.
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SPECTRAL MODEL PROPAGATION MODEL
A](z) 0
_ a-l -
X(Z) = A (Z) U(Z) ’ A(Z) 0 Az(z)
X(z), U(z) are Nx1 vectors, N = number of targets

y(2) = B(2) X(2) = B(z) A™'(2) U(z)
M

H(z)

y(z) is an Mx1 vector, M = number of sensors

Figure 30: Model for the Multitarget Data

55




° Implement and test a candidate algorithm with emphasis on its
tracking ability. The objective will be to demonstrate that
after track initiation, the MTS algorithm can provide consistent

tracks of several targets.

In the second part of our investigation, we will extend the MTS

algorithm to the noisy data case. Some of the basic issues here are:

° How to do proper prefiltering for the MIMO RML2 algorithm.

o Develop the positive real conditions for convergence of

the MIMO algorithm and find a way of improving its convergence

(as we did in the single target case).

° Implement and test a candidate algorithm. Run a variety of

test cases at different SNR's to study convergence behavior.

] Use the experience gained to develop a final version of the

MTS algorithm and thoroughly test its tracking capability.

This second step will probably be more difficult than the first, and
require more preparation in terms of developing some new theoretical results.
However, our experience from the first phase of the project provided us with
a clear understanding of the difficulties involved and we feel that the

goals of the project can and will be successfully achieved.

The results of the second phase of the MIS project will provide a

significant contribution not only to multitarget tracking but also to
other areas of interest to the Navy such as: adaptive processing of multi-
channel signals (uoise canceling, adaptive deconvolution, adaptive line

enhancement, etc.) and the modeling of vector time-series.
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APPENDIX A

System Identification for Multitarget Tracking*

WS
k3

*Published in the Proceedings of the 13th Asilomar Conference on Circuits,
Systems and Computers, Pacific Grove, California, November 1979, and was
also presented to the National Academy of Sciences Panel on Applied
Mathematics Research Alternatives for the U.S. Navy, Washington, D.C.,
November 2, 1979.
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sonding 0 the iizect rach deiav and the zudiiipach

dslays. Since che directc jach aas :the snorzasc isiav,

the firsc large coefificiemt of 3 {2) «ill corTespond
L

0 the direcz~-path ielay. Thus. the TO0A can de easily
avaluacad o zhe :Bi: soefiicients even ia :the

Jresence of sultipach!

TAE MULTITARGET CasE

The ARMA nodeling 2pproach can je easily axtanded
20 zhe sultictarget case. Here she 3yscems cousisting
of carzecs and seasors will be Tepresented 5y a aylzie
iapuc, oulti-outpuc transier fuaction (i.e., ARMA
adel). A sizple example is lepiccad in Tigure 3.

The equacion describing zhe vector 2f aeasured

daca y(k) Lis given 3y
slkl
Lo
o
} []
]" : ! ' * )
! . H b - 5 =
%k
]
i .
b L4 '
.
[} . } . B
<
. : 3 . H
Figure 2. \Numerator Coefficiencs
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[ ly :omparing ..+, ang 13 @ toce izac 3 b1 34
iic.ents A,.3, are noc jreclselv :hcse 3 ae Trans-
igs fumeczom 3(2 A "(2). ia Zae:, :hey are relacas oy
ne aquation

I'L(z; Iz w3z oA iz - 235

Thus, if we ise 3jome parameter 23CiIACIOR lcanique D
34z an ARMA zodel ~a,,3,  C3 Tne 1aca ik, e Wii.

jave 20 perroram ariarwards the scap Of Iompucing “A,,3,.

izom ‘A,,3,:, and cthen svaluace che TZ0A's. 7arious

sscaniques are available Zor jrerforming tlese omputa-
tacus (lll=ill].

The *wu.iicarget lase Jota zhat in the jroposed approach, there s 20
aeed o “lapel' the zargecs it 2ach s3aD. .3 teces-
sary, 3f course,_tJ 2scaoiisn iaiziailv ine laoeiing of

EISEL B - 06 FIE SR G S TN "Z0a) tne zolumns 2f 3(z) ‘or A(z), i.e., ief2rmine
#nich column snall rafer I3 wnliza target. alterwars:,
Jnere the astinacas ¢ zha ARAMA 0efiiilencs ire .pdacaa At
rx,-:;} 2aca Iide SC@P <  3cs0rsing o tie new 13ata vecsor
Lz) = = L3z e 3,72),3..2), - (20D 7% .
t“‘:’J - -

The jrovosad avprcach zeriorms i racursive 3looal
2sCizacion Jrocess, L.2., I3r 1ll tirgets over the
:hosan :ime iaterval. The iigoriczam auccmacically
tTias 0 iz a satc of coefficiencs wnica axplaiat ia
he Sest way all :the ivailanla iaca. 3iace :nese

W2y » 4 “'nysizy {11a) zoefiiciencs :oncain zhe T304 ‘nformacion Zor 1ll :ne
sarzecs (as well as their spveccra), 7ve et 2 sec >f
snere .Jasiscant <stimactes - all :zarget locacions, djasac 2a
f=~-=’ 3 a, (2) 2ll che availaole iaca. If am spcimal saramecaer asci-
A(z) ® I , S(z)y =) < RS AS-Y) nator (s Jised, :the resuliing TU0A estinaces ire Iruly
! 1..3) 1402) jpcinal. I the standard tracking approacaes iiscussag
- - in zhe Introduction, suly supopcimal paramecar 2sci-
JaC2s can e Jbcained, 3ince 2ach targef locacion Ls
I{irst ascimaced iadividually and ine tzackiag alzorizom
then ictampcs 4n 1ppropriata laseiing of Inese 2sgi-
zacas.

. 13 >eZore, we issume :nat zhe signals emicsad oy
N target3d x, z) irs uCoregressive jrocasses, then

Thus, che sugput af the sensors 2 she zulricarzec
tase :3n Je WTiIIan is

T(z) » 3(2) A"l Uz - W) . (12)
Tinally, if should Se a0cea :clat Jinding che asci-

‘ s g -y - - —_a e 4 . vt e Pt . .
scion Jf finaizg he carzec TSOA's 13 aquivalent g o.4 of cne <4, coefficiencs is equivalent o Jer-
I3 the >rooiem ¢ 28Ll3aCing she :oefilZemcs 3,4, 1

' 3£ sne <ransier Iunctiom 3(')\-3’:) la sther words foraing 5EEEéE3522Eé_éESg&E&é_&i&&EéEEEE € o
i - . =os SEhe . ’ sargecs, w7ith aygcomatic line associacisn. The fizse
iiad a nodel 3(:)A‘LC:) <hac 71ll Yesc iz zhe avail- is IrTue, sin¢e the spectrum can e somputed iirsccly
10la data 7(%):. Jnce =he 30del 1as jsesn ‘ound, Che irom che aucoregressive coefficiencs just as far che
. .3cation 3f zhe zarget will %e fsund 3y sxamining :ne Maxinum Iacropy Yechod [13;-{15j. The lacter is crye
:oefficieats ia :ie approoriace zolumm of 3(2), and st tte same reason that a0 celabeling of che T20A's
Tne targec spectra san e Sound from the ipprooriace is requirad.

aiaqents 3f  A(2).
RECTRSIVE PARAMETZR ISTIMATION
acsually, 4. (il) L3 20C juita the ‘form ve 3ot

Jnen ARMA 20deling i3 jeriormed, 3ince the aulii-inpuc, The approach Juctlined i2 ke 3Tevious sectiisas !
lzi-outdut ARMA a0del has :-he fora jepends on our 2bility =0 sompute the ARMA =ocefficiasncs i
3iven a 3ec >f zeasuremeants. This type JI Irodlem has 1
k 2 Jeen widely studied :in zhe general zantaxt 3f Jaramecer '
a(%) = "i:*:7(k'L) - 2:3‘;(1-:) . (13) astination and o the 3ore specific somntext 2f idensi- :
iw] * isl = fying svscam zodels Irom iapu/output teasuyresencs .. 5)- :
[34]. !
Taking z-cransforms will zive

The least squares carameter 2astimacion >roblam is :
Az) (2) = 3(2) (=) ., [¢%Y] usually Zormulaced as Iollows: g3iven a 3et of 2easuze- !

Sap(l, (te) o 2 - - Fod oy Oa ~

aents _,r(.c).u(s),,‘_o‘K Jind the 2efiiZents ,ni.si,

b4 - - : s N

(z) & A “(2) 3(2) (2) . 13 chat will ainimize :the zean square aITOT z:;y(k)-y(k)} i
[ 3 I
Jnece . - - 4

- 700 = = TR piket) « 5.3, u(k-L) . (13)
a(z) ® . 118) o - - e ;
The veczor v(k) is :ne value rediczed Ov the ARMA '
3(z2) = o84 20del, Ior zha 2easuremen: at time K. '
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Nefl Lie JaFwid 1% 3Gaweadn o
L3 3toaiam .3 ¢ :

chms cam @ ‘ouma i Lo, (LT, I3l 1I2,. The
5.3ud20n L3 jomewnal Tore 2moiicatazs /mea LI L3 10T
SO$8104ia 1) Teasure ik, .  jowaver, IV assuming taal
2%, 13 3 secuance £ Lncesengsnc  ‘vaita’' sandom
aridoies ~iIN Iall rariance, L& i3 JCiil Jossidle 2
1SClDate *1d T0GAL JArIMEC2C3. 1S a8 L3 JSUddLY
s3ZarTeq I i3 'Ine case of lorTaiacac cesiludls, | inc
savearal zscnniquas ave jeen suggestaa ot LIs solu-
1.00. Tor iatails. sae 1le juLvev v ascIom (19,

More sscantly 3 1dw 3PDTOACT 1as Seen 1aveiopead
v dor¥ [13]-i10! vnich srovides ificient forms If che
so-called exacc recursive .aast sauaras algoritams.

These tew 1acea idvancages JIf :zomputa-
tzonai 2£iiciency ina asC DAra@ecar :ITackiag capaoil-
L2y [237.03%]. The lasc property is iapor=aat lor

sTacking =oving iargecs, since the ARMA n0del orTes-
sonding 10 suca taIzec3d 1as time varyilg Jaramecaers.
Thesa ilgoriiams ire ilso :apable of aandling nousta-
zionary 30uIle ind NOl3e ITICAssas.

ZONCLISTIONS

A 1ew tacaniiue Sor puiticarzef ITackiag <as dJut-
.ined -3 1233 ’aper. Chis approacn jroviies i IomoTe-

aensiva ‘razeworx Zor iecaciion, astimacion and ITackiag

36 wlcisle targecs, jased Ju WO <ay idaas:

e Tormulacing :ne auliitarget jroblem as 1 ayloi-
zaannel 23Cizacion Jrooiem, chus landling all
Tne targecs 3izuliansously.

e Taprasencing tie luiiiiensor iata Yy the rara-
zecars >f 1 zodel wnica Iica all ine availaole
iaca. <This Tesul:z3 ia 3 zicocal (opcimal)
astizacion Jf ali largec >aramecars.

Vhila ile secamizue 1as 0t Seen fully casted,
jiai1lar -ie3s tave Sean applied very successiully :ia
soeczral 2scimacion [2.3., the Maximum IatTopy Meched:
3zagle znaanel ana zulii-channel), and .o speech Jro-
iessing “2.3., =€ L2C aechod Zor 3peed analysis/
s~chesis). Thus, ve lave doch ioncepcual ind Jrac~
z2cal caasons :9 selieve zhac cnis is 1 7ery promisiag
poroaca viIa 3ign socencial Ior improviag aad axtend-
iag surTent :vacking :zapaoilicies.

Ve are curreactly ia the process Jf avaluacing che
seriovmance >f Ihis approach. Ve are also iavéstigac-
ing the a2xzension 3 Iax1s tachaiqua to: (a) zore
general Zotms of liaear Jrovagation aodels, () znore
3eneral targec spectTa [ARMA), (¢) daca with signifi-
:ant ioopler sh , and (d) active sovar and radar
soplizacions.
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APPENDIX B

TDOA Estimation




Let

y1(8) = x(£) + n,(¥)
(B1)
yz(t) = x(t+T) + nz(t)
-epresent signals received by two different sensors. The noise processes

nl(t), nz(t) are assumed to be white, and independent. The two signals

are related by
y2(t) = yl(c+1:) + n(t) (B2)
where

n(t) = nz(t) - nl(t+T).

The noise process n(t) has a variance equal to the sum of the variances
of ny and n,. The sampled values of Y15¥,e0t will be denoted by
yl(kAT), yz(kAT), n(kAT). Assuming that the sampling interval AT is

adequately small for =x(t), we have

40
y1(t) = 3y (KAT) sinc(t-kAT) (83)
where
sinc(t) = sin(mwt/AT)/(Tt/AT). (B4)
, Let
i
T = AT + At s 0 <At < AT,
<00
yz(iAT) = 2: yl(kAT) sinc[ (i+2-k)AT + At] + n(iAT) (B5)
k==
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Without loss of generality, we can set AT = 1, and make a change

of variables i-k = n, which will give

00

y,(1) = ng_jm b,y (i-0) + n(d) (B6)
where

bn = sinc(n + 2 + AT) (B7)

Thus, the time series yz(i) is related to yl(i) by a moving average
(MA) filter with coefficients as given by Equation (B7). In practice,

we will consider only a finite number (nb) of terms in the sum (B6).

The coefficients bn can be considered as the samples of a function
sinc{n + 1 + AT) which achieves a maximum at n + % + AT = 0. Hence,

given the coefficients bn’ the delay T is the value which maximizes

the function-

oy
b(t) = 2: bn sinc(T-n) . (B8)
n=1

In our experiments, we used a search algorithm to find the value T

which maximizes b(T). Some typical results are summarized in Table 2,

Section 4. A similar approach, which uses a different type of estimation
algorithm, can be found in [8].
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APPENDIX C

Program Description and Capabilities
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} The MTS algorithms were implemented on SCI's VAX. The programs are
: written in FORTRAN and are fully interactive. Plotting capabilities

t include a Tektronix display and character displays. The interactive

' program allows easy changes of test cases (target spectra, signal-to-
noise ratio) and algorithm parameters (type of algorithm, model order),

4 as well as convenient program modification.

The following pages present an example of the program parameters

‘ under our control and some typical plots obtained for a sample test case.




-

#

ON=LLINE HELP COMMAND

-e

- __ hewe
ALL KEYWJIROS MAY BE ABpREVIATED TU 4 LEIIERS
: SET SET VALUE OF UNE UR MURE PARAMETERS
; CIORR PERFURM A CURRELATION
i UPEN UPEN A TABLE
SHOw SHUw CONTENTS OR STRUCTURE Ur DATABASE
sSiop TERMINATE EAECUTION
SPEC CuMpUle A SPECTRUM
- D1ISPLAY DISPLAY CURVES
READ READ COMMANUS FRUM A FILE
_ DEBUG SEL DEBUG LEVEL
TARGET CALCULATE TKRANSMLI1TED SLIGNALS
RCVR CALCULATE KECEIVED SIGNALS
10n1 EXERCISE I10enTIFICATION ALGOKRIIHRM #1
IONZ EXERCISE IVDENTIFICATION ALGUKLITHM &2
- UL EXENCLISE IDENTIFICATLION ALGURLITHM #3
 11PE ABURI #HEWEVER YQU AKE CUMPLETELY FERShIMMLT
: KREAD PRESTURED SCENARIO
] READ SELUP.DAT 5O )
UPEN ARG ULD IARG.FLL
TTTUPEN DlsP OLL DLISPLFIL
OPEN RCVR OLD RCVRGFLL
UPEM LDN] JLD 1ONL1LFLL
Orend 1DN2 ULD [DNZ.ELL
OPEN LIUN3 OLD ION3.FIL
OPEN CURR ULD CORK.FILL
T UPEN SKPEC ULD SPEC.FIL T - T )
__SPEC AmuRrt o _ o B o
SURKN ABUK]T

.
.
.

-e
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[
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ae
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T LdN NAME
21
22
23
24
29
26
27
Z3

TAKG

pLSP
1D}
I0ond
IDN3
SPEC
CIRR

© o o o o O

LI NAME

TARG

@ © ©

O

CASE
NPGT
I1Pe
HEAN
S1Gu
SIGN
NA
NE
nILM
1Ml
DTIM
A
PR
AP
B
PeErM
U

A

cC e @ e o o ¢ ¢

RV

NAME ™~

;7 SHOw NAMES UF FILES

~e

"TSHUW ALL NULT - -
SEATus H1IM D1lm TLilmM " DESCRIP1LOUW —
OPEN lo 2 0 TARGET PARAMS
“OPERN 11 B ) RECEIVER PARAMS
UPERN 15 0 v D1SPLAY PARAMS
oPen 31 18 0 IDENTIFIER ALG 1
OPEN 31 13 U IDENTIFIEK ALG 2
oPEW 31 18 ) IDENTIFLIER ALG 3
oeEN 9 1 0 SPECTRAL DAlLA
UPEN 19 1 0 CORRELATIUNS
: 5AUW STRUCTURE OF A FILE
) :
o SHOw TARG ITEMS
STALUS HITM ULlIM  TITH DESCRIPTIUN
QPEN lo 2 0 TARGET PARAMS
TTIYPE T TREGN SIZe o] f TITLE
Ing HEDR 1 1
Int “heDR 1 2
CHAR HEDR 1 3
REAL  HEDR 1 4
KEAL ~ HEDR 1 ) _
REAL HEDK t )
INT HEDR 1 7
TINT HEDR 1 B
INT HEDR 1 9
REAL HEDR 1 1v
REAL HEDR 1 11
REAL HEDR 8 12
- REAW RebDR ] 20
REAL HEUR 8 23
REAL HEDR 8 3o
_REAWL REDR ] 44
REAL DATA i 1
REAL LATA 1 2

[
’

3 S5AQw CUWIENIS UF A FILE

Snuw [ARGET VALUES
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o~

DR e = T C L L

VALUES kIR [ARG

CASE = 3
NIGT = 1
ITYPE = FMOD
MEAN = 0,00000 ) T T
SIGU = 0.20000
S1Gh = 0.00000
T NA s 2 - T - - —m——
NE H 1
NTIM = 512
FIMl =~ 7 70.00000
DIIM = 1.00000
L A = «0.67300 1.00000 0,U0000 0,00000 0,u0000
0.,v0000 0.00000 0,00000 T
PER = 5.12000 3.00000 1.00000 1.0000U 1.00000
1.U0000 1,00000 1.00000
T AMP = 1.41400 I.41400 0.000060 — 0,000v0 0.00000
0.00Vu0 0.00000 0.00000
o = 0.0UUVO 0.00000 0,00000 0.0V0000 0.0000v
- 0.uuuyo 0.00000 0. 0000y -
PeRM = 2000.00000 20u0,0000U 100UV,.000G0 1,00000 1.00000
1.00000 1.00000 1.,00000
H
- - T 7 EXECUTE TARGET=-1 SLNE wAvE UNMUDULATED
o H
TARGET
MEAw=U, MEAN=X, S31G=U, 31G=X= VU.000E+vU =5.907E=06  0.000E+00 1.00LE¥#00 ~
;s CUMPUTE AND DISPLAY TARGET SPECTRuUM
—_ = —— e
SPEC v
1 TIMEg Ibwnl “PRED( 1) WINDOWSHANF T T ToToTTmT T
f 2 TIME TARG X « 1) wlNDOW=HANF
' 3 TIME =®CvR ¢ { 1) wINDOWSHANF
T4 IMPL  lLwnl A T 1) wINDOW=NULL T T T
5 IMeL  lDN2 A ( 1) winDOwsSNULL
-} IsD 160 B ( 1) winpOw=nwUull
7 Iovb 180 {80 ( 1) wiInDOwsNULL
-} loL [BD 18D ( 1) wlnwDOw=sNULL
v 1oV Tov I (1) wINDOWSNULL
1o 1b0 180 " lsv ( 1) wihDOwW=iULL Tttt T
SPEZTRUM nUMberx OR VU Fumx HELP:
2
N e . . I ]
vise 2 7

; BAECVIE RECEIvVER==SNk=1U

-e
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[ ’ SHUW RCVK VALU
3 —’; 4
VALUES FUR RCZVR - o
"  ZASE = 9 - -
- NKCV = 1
Sk = 10.UQuu0 1,00000 1Uv,. 00000 100,00000
- ND = 4 T -
@ Nlle = 512
_fiml = 0.90V00
3 s DTIM = 1,00000
® | 81 s 1.00000 V.00000 0.00000 0.00000 0.00000
L 0.,00000 0.0U000  0,00000
B2 s 0.00000 V.00V00 v, 00000 TTTI.,00000  0,00000
l o) 0.00000 0.00000 0,00000
B3 3 0.u9000  0.00000 0.00000 0.00000 0,00000
- 0.0V000 0.00000 V. 00000
- B4 z 0.00000 0.00000 0.00000 V.00000 0.00000
L 0.00000  0.,00000 0.00000
F . RCVR ;
{ ~ MEAN=n, MEAN=Y, S1G-nN, SIG-Y= 1.,401E-0Z 1.368E-02 3.12Z2E-01 1,05BE+U0
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16 Bl ( 4)+=0.U% 17 81 ( 5)+=u,0% 18 Bl ( 6)+=U.U*

19 B1 L T)+=0.us 20 Bl ( B)+=0,0% 21 TRAZ( 1)+=0U,U*

22 EYA ( 1)+=0.0% 23 LAM1( 1)+=0.0% 24 PRED( 1)+=0,0¢

25 KES ( 1)+=0.U% 26 A ( 1)+=2,5%SGA 27 A ( 2)+=2,5455A

28 A ( 3)+=2,5*5GA 29 A ( 4)+=2.5*5GA 30 A { 9)+=2.5%3GA
T 31 bl 1)3¥-2,5%56B17 32 BI ( 2)+=2.5*S5GBT 33 bl T 3)¢=2.5%s681
s 34 Bl ( 4)+=2.5#%3GB! 35 Bl ( S5)+=2.5*SGBl 36 C ( 1)+=2,5%5GC
: 31 ¢ ( 2)+=2,5%3GC 38 C  ( 3)+=2.5%*5GC 39 ¢ { 4)+=2.9%8GC
40 C ( 5)+=2,5%5GC 41" TRAC( 1)+=0,0% G2 EIA T 1)+=0.0+

43 LAMLI( 1)+-0,0% 44 PRED( 1)+=0,0% 45 RES ( 1)+=0,0%

46 A ( 1)+=2,5%5GA 47 A ( 2)+=2.5*5GA 48 A ( 3)+=2.95*SGA
f 49 A ( 4)+~2,5%5GA 50 A ( 5)+=2.5%¥SGA 51 B1 ( 1)+=2.5¥%sGB1
i 52 Bl ( 2)+=2.5%35GBl 53 Bl ( 3)+=2.5%5GB1 54 Bl ( 4)+=2.5%5GB1
‘ 55 ol ( 5)+=2.5%8GBl1 S6_ C  ( 1)+=2,5%5GC 57 C { 2)+=2.95%8GC
T 88 ¢ ( 3)+=2.5%5GC 59 € T ( 4)+=2.5%3GC 60 C (S)+=2.5%56GC

NEXT CURVE #, 7/ OR 0 FOR HELP:
3 20 ¢/
STOP
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